Why study moduli problems? Two reasons... When X is a projective variety, M(X) often has analogs in algebraic geometry A) Classify geometric objects > easier, thanks to language of stacks G leads to deeper understanding of the structure of these objects First issue: some objects are parameterized by Ex: compact Lie groups ~ theory of root data continuous parameters (B) Explosion of interest in moduli since 80's Ex: moduli of curves as an algebraic stack New invariants in differential geometry: =functor of points pseudoholomorphic curves, gauge theory For any scheme B, Mg(B) := { smooth families of } Mg(B) := { genus q curves / B } Idea: Given a manifold X... Associate a moduli problem M(X), aroupoid then "count" # M(x), objects up An algebraic stack which is "Deligne-Mumford" (DM) to isomorphism. => Finite automorphism groups

Moduli in AG

Gold standard	eel-Mori): A	tny separa	ted DM s	tack M
has	eel-Mori): A a coarse	moduli	space M-	→X
		lgnore: space v	rs. scheme vs. quasi-pr	ojective scheme
This sug	gests a gene	eral approa	ch:	

- 1) Identify a functor of points
- 2) Show that it is an algebraic stack

3) Check that it is separated and DM, and apply Keel-Mori theorem

L> e.g. Artin's criteria

Problem (for either goals A or B): Many stacks of interest are not DM, so (3) fails

Today: A version of this program which works for general algebraic stacks

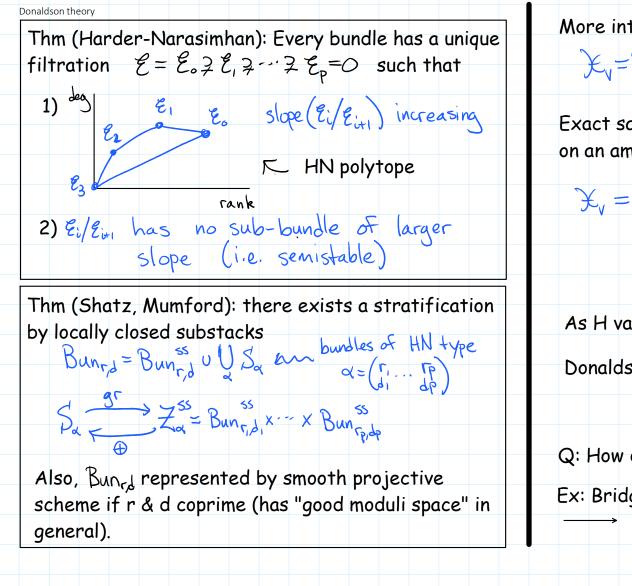
Gold standard: Fix smooth genus g curve, C $Bun_{r,d}(B) := \begin{cases} vector bundles on CxB with \\ deg=d, rank=r on Fibers \end{cases}$ This is an algebraic stack \rightarrow can discuss line bundles, sheaves, cohomology, open/closed substacks Ex: a line bundle is a natural assignment $\begin{pmatrix} maps \\ B \rightarrow Bun_{r,s} \end{pmatrix} \rightarrow \begin{pmatrix} line bundles \\ on B \end{pmatrix}$

But doesn't help much with goal A, classification:

(look at degenerations of Oc(-n) @ Oc(n))

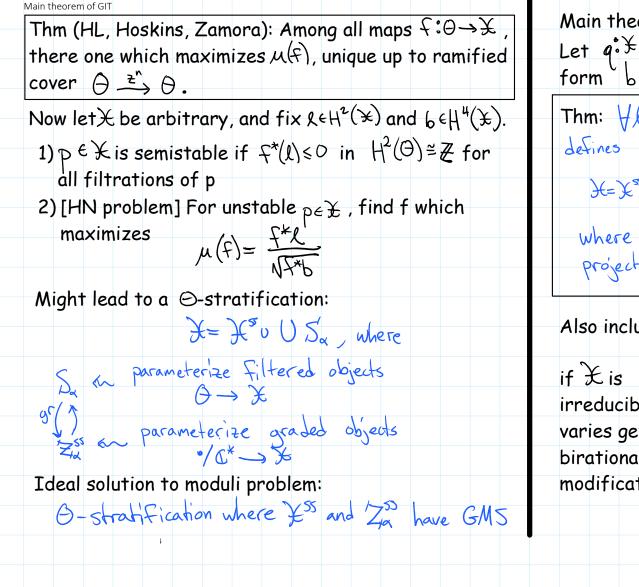
Bung is unbounded, non-separated

Lecture 1 (collapsed) Page 2



More interesting: sheaves on a surface S Ev={ coherent sheaves on 5 with } numerical K-theory class v } Exact same structure, but HN stratification depends on an ample class $H \in NS(S)_{\mathcal{R}}$. $\mathcal{X}_{v} = \mathcal{X}_{v}^{H-ss} \cup \bigcup_{\alpha} S_{\alpha} \quad \alpha = \begin{cases} (v_{1}, \dots, v_{p}) \in \mathcal{K}_{0}^{num}(S) \\ v_{1}+\dots+v_{p}=v \end{cases}$ MH-ss moduli space As H varies... My changes is wall & chamber structure on NS(S)R Donaldson invariants of S arise as "integrals" " J" (tautological Cohomology class) Q: How do they depend on H? Ex: Bridgeland semistable objects in $AcD^{b}(S)$

---- New techniques needed



```
Main theorem of GIT:
Let q: \stackrel{\searrow}{\xrightarrow{}} \rightarrow Y be a good moduli space, and fix a
form beH4(x).
```

Thm: ULENS(X), numerical invariant M= R/ND defines a O-stratification H=X=(R) 0 Souro SN and Si = Zi, where X s (e) and Zi have GMS which are projective /Y

Also includes variation of GIT quotient:

irreducible, as l varies get birational modifications

 $\mathcal{F}^{s}(\ell) \subset \mathcal{F} \supset \mathcal{F}^{s}(\ell')$

Existence of Theta-stratifications

Meta-principal:

Birational geometry of moduli spaces should be understood as variation of stability in some larger moduli problem with good moduli space

 $q: X \longrightarrow Y$

Ex: Smyth classified all DM modular compactifications of $\widehat{M}_{a_V^n}$

Ly Would be nice to run MMP on Mgn by varying stability on moduli of all curves

Ex: Bayer-Macri prove that if $X \rightarrow M^{H-ss}(S)$, then projective A $X \cong$ Bridgeland semistable $X \cong$ CY K3 $X \cong$ Complexes on some X

We will use this in the next lecture to study the local structure of flops

Useful concept for constructing Θ -stratifications

Def: £ is Θ -reductive if for any family over a discrete valuation ring, $S_{pec}(R) \rightarrow £$, any filtration over the generic fiber extends uniquely to the special fiber.

Thm A (HL): Let \checkmark be a \ominus -reductive algebraic stack. Then a numerical invariant \land defines a \ominus stratification if and only if

1) Every unstable point has a unique HN filtration

2) In a bounded family Spec(A) >)E, only Finitely many types of HN filtrations arise

Rem: main theorem of GIT is a special case

Thm B	(Alper-HL-H	•	aces as we Let ⊁ be					
finite	type with aff noduli space it	ine diago	onal. Then	•				
	¥ is ⊖-		•					
2)	closed poin automorph X has "	ts of	X have roups, a	reducti	ve			
3)	H has "	Inpunct	nred in	ertia"				
	two theorem ing general mo	•	. –		0			
Keel-N	lori theorem		11 5					
Next t and	ime: Discus applications	s what to i	thm B Bridgeland	semis	table			
Next t and		s what to f	thm B Bridgeland	semis	table			
Next t and	ime: Discus applications	s what to f	thm B Bridgeland	semis	table			